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THE ORDER OF CONVERGENCE OF EIGENFREQUENCIES 
IN FINITE ELEMENT APPROXIMATIONS 

OF FLUID-STRUCTURE INTERACTION PROBLEMS 

RODOLFO RODRIGUEZ AND JORGE E. SOLOMIN 

ABSTRACT. In this paper we prove a double order for the convergence of eigen- 
frequencies in fluid-structure vibration problems. We improve estimates given 
recently for compressible and incompressible fluids. To do this, we extend 
classical results on finite element spectral approximation to nonconforming 
methods for noncompact operators. 

1. INTRODUCTION 

This paper deals with the approximation of eigenfrequencies in vibration prob- 
lems for coupled systems with fluid-structure interaction. Such problems have been 
considered in several recent papers. A survey of current results and references can 
be found in [12]. 

In particular, we consider the interior elastoacoustics problem consisting of de- 
termining the vibration modes of an elastic solid containing a fluid. Different for- 
mulations have been proposed to solve this problem (see [6, 11, 14]). A pure dis- 
placement formulation yields a simple eigenvalue problem; however, spurious modes 
arise when standard finite element methods are applied to it (see [11]). Recently, 
several methods to avoid these spurious modes have been proposed (see [2, 3, 8]). 

In [2] a finite element method consisting of Raviart-Thomas elements for the 
displacements of the fluid and standard Courant elements for those of the solid is 
introduced for the case of a compressible fluid. A weak coupling between both type 
of elements along the interface is imposed. In [3] this method has been adapted to 
deal with incompressible fluids. Both procedures yield nonconforming methods to 
approximate the eigenvalue problem for the noncompact operators present in the 
formulation'. 

It is well known, in the case of conforming approximations of compact operators, 
that the order of convergence for the eigenvalues doubles that for the eigenfunc- 
tions (see, for instance, [1]). In [10] the same result is proved to be valid even for 
noncompact operators under reasonable assumptions. A similar analysis is con- 
tained in [13] for nonconforming approximations of compact operators. None of 
these theories cover the situations considered in [2] and [3]. 
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In [5] and [4] efficient numerical results are reported in the cases of compressible 
and incompressible fluids, respectively. In both cases, the experiments seem to 
show an improved order of convergence for the eigenvalues. The aim of this paper 
is to show that this order effectively doubles that for the eigenfunctions. Toward 
this end, a suitable modification of the theory in [10] is introduced to cover the 
nonconforming case. By so doing, consistency terms arise in the estimates. These 
terms are proved to be of the appropriate order in the present cases. 

In ?2 we give a general result valid for nonconforming approximations of non- 
compact operators. In ?3 and ?4 we apply this result to the cases of a compressible 
and an incompressible fluid, respectively. 

2. NONCONFORMING APPROXIMATION OF THE EIGENVALUES 

OF A NONCOMPACT OPERATOR 

Let X be a complex Hilbert space with norm . * Let V be a closed subspace 
of X and {Vh} a family of finite-dimensional subspaces of X. Let a and b be 
two continuous sesquilinear forms on X; a is assumed to be coercive. Let A and 
Ah: X X be the linear operators defined for each x E X by 

(2.1) Ax E V: a(Ax,y) = b(x,y), Vy E V, 

(2.2) AhX E Vh: a(AhX,Y) = b(x,y), Vy E Vh. 

Because of the Lax-Milgram lemma, the operators A and Ah are bounded uniformly 
in h. 

If V 54 X, then u(A) = a(AIv) U {0}, where o,(.) denotes the spectrum of an 
operator. Let A E C be an isolated eigenvalue of AIv of finite algebraic multiplicity 
m; since a is coercive, A =$ 0. Therefore, A is also an isolated eigenvalue of A. Let 
D c C be a closed circle centered at A such that 0 0 D and D n u(A) = {A}. 
Let Alh, ... . Am(hh be the eigenvalues of Ah contained in D (repeated according to 
their algebraic multiplicities). 

We assume the following two approximation properties to be satisfied: 
P1: There holds 

lim || (AA-Ah) IVh II = 0; 
h--+O 

P2: For each eigenfunction x of A associated with A, there holds 

lim( inf IIx-xh II =0. 
h-*O \XhEVh / 

Under these assumptions, it was proved in [9] that for h small enough one has 
m(h) = m and that limhbo Aih = A for i = 1,... , m. In [10] estimates of XI - AihI 
are given in the conforming case (i.e., when Vh C V). 

In [13] the same problem is analyzed but assuming 
P3: There holds 

lim IIA-AhIl = 0 
h--+O 

instead of P1 and P2. However, P3 implies that A is compact, which is not the 
case in the fluid-structure vibration problems considered in the following sections. 
Furthermore, the results in [13] giving an improved order of convergence for the 
eigenvalues rely on a similar property holding in weaker norms for suitable restric- 
tions of A - Ah. This does not seem to be the case in the applications under 
consideration since incomplete polynomials of degree one are used for the fluid. 
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The results in [9] could be extended to the nonconforming case (i.e., Vh ? V). 
However for the estimators therein to be useful, the eigenfunctions of the adjoint 
operator A* with respect to a need to be smooth. To avoid this drawback, instead 
of the adjoints A* and A*, we consider as in [13] the bounded operators A* and 
A*h: X - X defined by 

(2.3) A*x E V: a(y, A*x) = b(y, x), Vy E V, 

(2.4) A*hx E Vh: a(y,A*hX) = b(y,x), Vy e Vh. 

Then A is an eigenvalue of A* with the same multiplicity m as that of A (see [13]). 
Analogously, for h small enough, Alh, ... Ah are the eigenvalues of A*h belonging 
to D := {Ji E C: E D}. 

We assume for A* and A*h approximation properties analogous to P1 and P2, 
namely, 

P1*: There holds 

lim || (A* - A*h) IVh II = 0; 

P2*: For each eigenfunction x of A* associated with A, there holds 

lim ( inf IIx -XhII) =0 
h--*O \XhEVh/ 

Let Ih and *h: X - X be the projectors with range Vh defined by 
a(x - llhX,y) 0, Vy E Vh, and a(y,x - l*hX) = 0, Vy E Vh, respec- 
tively. Since a is continuous and coercive, Hh and 1*h are bounded uniformly 
in h. Let Bh := Ahllh X ) X. Notice that u(Ah) = u(Bh) and that, 

for any nonzero eigenvalue, the corresponding invariant subspaces coincide. Let 
B*h := A*hHl*h X - X. 

Let E: X - X be the spectral projector of A relative to the isolated eigenvalue 
A. Let Fh: X - X be the spectral projector of Bh relative to its eigenvalues 
Alh,.. , Amih It can be proved as in Lemma 1 of [10] that there exists ho > 0 such 
that (z - Bh)>- 1 is bounded for h < ho and z E aD; consequently, for h small 
enough, the spectral projectors Fh are bounded uniformly in h. Let E* and F*h be 
the spectral projector of A* and B*h relative to A and Alh, .. , Amh, respectively. 

We remark that B*h turns out to be the actual adjoint of Bh with respect to a. 
In fact, for all x and y e X, 

a(Bhx, y) = a(Ahllhx, Y) = a(AhllhX, l*hY) = b(HhX, H*hY) 

and, analogously, a(x, B*hy) = b(llhx, ll*hy). Therefore, the spectral projector 
F*h is also the adjoint of Fh. 

For Y and Z closed subspaces of X, let 

6(Y, Z) := sup (inf IIY-Zll) 
yCY zEZ 

IIYII=1 

and 

6(Y, Z) := max {6(Y, Z), 6(Z, Y)}. 

Let ^Yh = 6(E(X),Vh) and _Y*h = 6(E*(X),Vh). Because of P2 and P2*, we 
have Yh 0 and Y*h 0 as h 0. Since a is coercive and continuous, there 
holds Il(I-nh)IE(x)hl ? C^/h and ||(I-II*h)IE*(X)Jl ? C R,1 From now on, C 
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denotes a generic constant not necessarily the same at each occurrence but always 
independent of h. 

For h sufficiently small, we have the following results: 

Lemma 2.1. There holds 

|| (E -Fh) IE(X) ||I< C || (A -Bh) |E(X)|, 

|| (E* -F*h) I E* (X) II < C II (A*-B*h) |E* (X) | 
Proof. The proof is identical to that of Lemma 3 in [10]. C] 

Let 8h Y= h + 11(A - Ah) Vh || and 6*h =7*h + H (A* - A*h) Vh 11. Because of P1 
and P2 (resp. P1* and P2*) we have 8h - 0 and 6*h - 0 as h -* O. 

Lemma 2.2. There holds 

|| (A- .Bh) E(X) < C6h8 

||(A* -B*h) IE* (X) ||< C* h' 

Proof. Let x C E(X) with jlxIj = 1; we have 

(A - Bh)XII < IIA(I - Ilh)XII + II(A - Ah)lIhXH 

< 11AI I I - llh)XII + II (A - Ah)IVh | |IIIhX|| 

< C(7h + 1 (A - Ah) Vh 11) = C6h, 

and an analogous proof is valid for the second estimate of the theorem. C] 

Let Ah:= FhIE(X) E(X) - Fh(X)- 

Lemma 2.3. The operator Ah is bijective and IIA-1ll is bounded in h. 

Proof. See the proof of Theorem 1 in [10]. 

Theorem 2.1. There holds 

6(Fh(X),E(X))? C8h 

Proof. The proof is identical to that of Theorem 1 in [10]. L 

Let A :=AIE(X)E(X) - E(X) and bh := Ah-BhAh E(X) E(X). The 

operator A has a unique eigenvalue A of algebraic multiplicity m; the operator bh 
has the eigenvalues Alh,.. **, Amh. 

Consider the following consistency terms: 

Mh = SUp SUp [a(Ax, ll*hy) - b(x, H*hY)], 
xEE(X) yEE*(X) 
IlxII=1 I1yII=l 

M*h = SUp SUp [a(HhX, A*y) - b(Hhx, Y)]. 
xEE(X) yEE*(X) 
IlxII=1 I1yII=l 

It is clear that Mh = M*h = 0 for conforming methods. In general, we have the 
following result, which can be seen to be an extension to the nonconforming case 
of Theorem 2 in [10]. 

Theorem 2.2. There holds 

A-Bh <C(6h6*h+Mh+M*h)- 
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Proof. We easily see that 

A-Bh = sup (A-Bh)x 
xEE(X) 

I1xII=1 

< C sup sup a((A-bh)xY) 
xEE(X) yEV 
IHxII=1 IIYII=l 

(2.5) = C sup sup a((A--Bh)xy). 
xEE(X) yEE*(X) 

11x11=l 11y11=l 

By using that (A-Fh - I) AIE(X) = 0 and that Bh commutes with its spectral 
projector Fh, it is straightforward to prove that 

(2.6) A - Rh = (A - Bh) IE(X) + (AA'Fh - I) (A - Bh) IE(X)- 

Let x E E(X) and y E E*(X) with lIxii = IIyl = 1. Since Fh (Ai-jFh - I) = 0 
and F*h is the adjoint of Fh with respect to a, we have 

la((A-Fh - I) (A - Bh)x, y) I 

(2.7) = la ((A-1Fh -I) (A-Bh) X, (I- F*h) y) 

? hall ||A-Fh - III |(A - Bh)iE(X) j(I-F*h) IE*h(X)II 
< C6hb*h I 

where we have used Lemmas 2.1, 2.2 and 2.3 and the fact that Fh is bounded 
independently of h. 

On the other hand, 

(2.8) a ((A-Bh) x, y) = a ((A-Bh) x, *hY) + a ((A-Bh) x, (I-ll*h)Y) 

By using Lemma 2.2 we may bound the second term in the right-hand side of (2.8): 

(2.9) a( (A- Bh) x, (I- ll*h)Y) ?< all || (A - Bh)iE(X) (I- ll*h)iE h(x)) 

< C6h8 * h , 

whereas for the first term we have 

(2.10) a (A - Bh) X, *hY) = a (A- Ah) x, I*hY) + a((Ah -h) X, *hY) 

Now, 

(2.11) a( (A - Ah) x, *hy)= a (Ax, Il*hY) -b (X, ll*hY) ? Mh 

and 

a( (Ah - Bh) X, l*hY) = a (Ah (I - h)X, l*hY) = b (I - lh)X, l*hY) 

(2.12) = b((I - llh)X,Y) - b((I - lh)X, (I - H*h)Y). 

The second term in the right-hand side of (2.12) can be easily bounded by 

(213) Ib(I - h)X, (I - *h)Y)? < 1 ,bil ||(I-1h) E(X) (I- I*h) E*h(X) 

< CYh _7* h 
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and for the first term we have 

b ((I-llh)X y) = a(x, Ay) -b(lhx, y) 

(2.14) = a ((I - h)X, A*Y) + [a(lhx, A*y) - b(llhx, y)] 

Finally, for the first term on the right of (2.14) we have that 

a((I - llh)x, A*y) = a((I - Hh)x, (I- l*h)A*y) 

(2.15) < 11al ||(I - Ih)OE(X) (I - II*h)IE*h(X) 1A*H ? Cyh*h 

whereas for the second term we have 

(2.16) a(lhx, A*y) - b(lhx, Y) < M*h- 

Now the theorem is a consequence of formulae (2.5) to (2.16). 

By using the previous theorem, we deduce the following result about the approx- 
imation of the eigenvalue A: 

Theorem 2.3. We have 

(2.17) A - - Aih < C (6h8*h + Mh + M*h) 

and 

(2.18) max |A- Aihd < C (6h8*h + Mh + M*0) ) 

where ca is the ascent of the eigenvalue A of A (i.e., ae is the least positive integer 
such that Ker((A - A)') = Ker((A -Aye+)). 

Proof. (2.17) is a direct consequence of Theorem 2.2 and the continuity of the trace 
for finite-dimensional operators. (2.18) is an application of well-known results for 
matrices (see, for instance, [16]). E 

We remark that if AIE(X) is diagonalizable, then ae = 1 and so we have esti- 
mates of the same order for the convergence of all the approximate eigenvalues 
Alh, , - I Amh. This is the case in the applications considered in the following sec- 
tions, where AIV: V ) V is selfadjoint with respect to a. 

3. APPROXIMATION OF EIGENFREQUENCIES IN A FLUID-STRUCTURE PROBLEM 

We consider the problem of determining the vibration modes of an ideal (inviscid) 
barotropic fluid contained in a linear elastic structure. We take as a model problem 
the case of a vessel completely filled by the fluid. We restrict ourselves to the 
2D case and assume polygonal boundaries and interfaces. This problem has been 
analyzed in [2], where a nonoptimal rate of convergence for the eigenfrequencies 
has been proved. 

Let QF and QS be the domains occupied by the fluid and the solid, respectively, 
as in Figure 1. We assume QF to be simply connected but not necessarily convex. 
By ri we denote the interface between the solid and the fluid, and by v its unit 
normal vector pointing outward from QF. The exterior boundary of the solid is the 
union of rD and rN: the structure is fixed along rD and free of stress along rN; let 
iq denote the unit outward normal vector along rN' 
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rI 

............. 

rN 

FIGURE 1. Fluid and solid domains 

Henceforth, we use the standard notation for Sobolev spaces, norms and semi- 
norms. 

Let X:= H(div, QFF) x [Hr (As 2 (Hr (Qs) being the subspace of functions 

in H1(Qs) vanishing on rD) endowed with the H(div,QF) x [H1(Q5)]2 norm, 
which we denote by 11(u,v) I. Let V be the closed subspace of X defined by 
V := {(u,v) E X : u. = v von rF}. Let ao and b be the continuous, sym- 
metric and positive bilinear forms on X given by 

ao ((u, v), (q5,4)) = PFC2divu div +j v(v) : e(+), 
F S 

b ((u, v),(,y) := PFU4 +jPSV.4 
QF QS 

where cr(v) : e(O) denotes the tensorial product between the strain tensor Eij (4) 
2 'I + a ) and the stress tensor uij(v) :A k 6kk(V)&ij + 2fLs:2(v) (A= 

and ts, being the Lame coefficients of the structure); ps and PF are the densities of 
the solid and the fluid, respectively, and c is the acoustic speed in the fluid. 

The classical acoustic approximation for the small-amplitude motions yields the 
following eigenvalue problem for the vibration modes of the coupled system (see 
[2]): 

VPO: Find A E R and (u, v) E V, (u, v) $ (0,0 ), such that 

ao ((u, v), (01, 4)) = Ab ((u, v), (0, 4)), V(0, 4') E V. 

Here, w = x/X is the frequency of the eigenmode, and u and v are the displacements 
in the fluid and in the solid, respectively. 

There exist eigenmodes of problem VPO which do not induce vibrations into 
the solid. They are pure rotational motions of the fluid and correspond to the 
eigenvalue A = 0. It is proved in [2] that the corresponding eigenspace is K := 
{ ( curl (, 0), ( E HO' (SF) } . Therefore, the bilinear form ao is not coercive. How- 
ever, a := ao + b is coercive and can be used instead. The eigenvalue problem 
associated with a is: 

VP: Find A E R and (u,v) E V, (u,v) $4 (0,0 ), such that 

a ((u, v), (a 4)) = Ab ((u, v), (0, 4')), IV(, 4') E V. 
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As in the previous section, we consider the bounded linear operator A X , X 
defined by A(u, v) E V and 

a (A(u, v), (X, 4)) = b ((u, v), (Q, 4)), IV(0, 4) E V. 

Since a and b are symmetric, AIv is selfadjoint with respect to a. Clearly, 
(A, (u,v)) is an eigenpair of AIV if and only if (, (u,v)) is a solution of VP 
which, in turn, is equivalent to ( -1, (u, v)) being a solution of VP0. 

The operator AIv is not compact; in fact, A = 1 is an eigenvalue of AIv with 
infinite-dimensional eigenspace K. Nevertheless, AKI is compact. This is used 
in [2] to show that the spectrum of AIv consists of the eigenvalue A = 1 and a 
sequence of finite-multiplicity eigenvalues {An: n E N} c (0,1) converging to 0. 
Each eigenvector (Un, Vn) associated with An E (0,1) satisfies curl un = 0. Further- 
more, additional smoothness can be proved for these eigenmodes. In particular, the 
following a priori estimate will be used below to estimate the consistency terms. 

Theorem 3.1. Let (u, v) be an eigenfunction of A with corresponding eigenvalue 
A E (0,1). Then u E [H (QF)]2, v E [H1+O(Qs)12 divu E H1+(QF) and 

)]2 + IVII [H1+S()]2 + divuIIH1+-(Q-) ? C||(uv)|, 

with ca E (1/2,1] and /3 E (0,1] and with C a positive constant. 

Proof. This is a straightforward extension of the proof of Theorem 2.6 in [2]. As 
therein, the constants ae and / only depend on the data of the problem. More 
precisely, ae = 1 if QF is convex, and ae = #, with 0 the largest reentrant corner of 
QF, otherwise. On the other hand, / E (0, 1] depends on the reentrant corners of 
aQs I on the angles between rN and rD and on the Lame coefficients As and its. R 

The eigenfunctions in K are not physically relevant since they induce neither 
vibrations into the structure nor gradients of pressure into the fluid. However, 
a suitable numerical approximation should be such that the discrete eigenspace 
associated with A = 1 be large enough as to approximate the whole K as the 
meshsize goes to zero. Otherwise, spurious modes may appear. This is the case, 
for instance, when continuous piecewise linear finite elements are used for both, the 
fluid and the solid (see [11]). 

To avoid such spurious modes, the following approach is considered in [2]. Let 
{Th} be a family of regular triangulations of QF UQS such that every triangle is com- 
pletely contained either in QF or in Qs For each component of the displacements 
in the solid, standard piecewise linear finite element spaces are used: 

Lh(QS):= {v E H1(Qs): VIT E Pl(T), VT E Thl T C Qs}. 

For the displacements in the fluid, the lowest-order Raviart-Thomas spaces [15] are 
used: 

Rh(QF) :={u E H(div,QF) : UITE Zo(T) VT E Th T C QF}, 

where 

lZo(T) :={u E Pi(T)2: u(x,y) = (a + bx,c + by), a,b,c E R}. 

The degrees of freedom in Rh (F) are the (constant) values of the normal compo- 
nent of u along each edge of the triangulation. The discrete analogue of X is 

Xh := {(uv) E Rh(QF) X [Lh(qs)]2 = ?} . 
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The intersections V n Xh are not suitable finite element spaces to approximate 
V. In fact, any function of these spaces has constant normal components along 
each segment of ]I and, hence, only functions in V with the same property could 
be well approximated. Instead, we use 

Vh:= {(u,v) E Xhf: f (u vv- ) = O. v W edge of Th, t c 1}. 

We remark that for (u, v) E Vh, u * v and v- v coincide at the midpoint of each edge 
? c ri but, in general, they do not coincide on the whole edge. Hence, Vh 0 V; 
that is, the method turns out to be nonconforming. 

As in the previous section, we consider the linear operator Ah: X - X defined 
by Ah(uv) E Vh and 

a (Ah(u, v), (I, Vs)) = b ((u, v), (I, V))), V(b, ip) E Vh 

Properties P1 and P2 in the previous section have been proved in [2] for this 
finite element approximation. More precisely: 

P1: There exist positive constants C and ho such that, if h < ho, then 

11 (A-Ah)IVh 11 < Ch. 

P2: For each eigenfunction (u, v) of A associated with A E (0, 1) with 11 (u, v) II = 

1, there exist positive constants C and ho such that, if h < ho, then 

inf ,e l (v) - (uh, Vh) II < Cha'. 
(UhVh)CVh 

In both cases, y := min{ca, 3} with ca and / the constants arising in Theorem 3.1. 
Obviously, properties P1* and P2. are equally valid. In fact, since a and b are 
symmetric, then A. and A-h, as defined in (2.3) and (2.4), coincide with A and Ah, 
respectively. 

The spectrum of Ah furnishes the approximation of the spectrum of AIv analyzed 
in [2]. The following results are proved therein. First, the eigenspace associated 
with A = 1 is well represented in this discretization: 

Theorem 3.2. A = 1 is an eigenvalue of Ah and its eigenspace is K n Vh. 

Secondly, there are no spurious eigenvalues for h small enough: 

Theorem 3.3. Let J be a closed interval such, that J n a(A) = 0. There exists 
hi > 0 such that, if h < hi, then J nc(Ah) = 0. 

Let A E (0, 1) be an eigenvalue of A with multiplicity m. As in the previous 
section, let E(X) denote the eigenspace of A associated with A. Since P1 and P2 
are fulfilled, for h small enough there are exactly m eigenvalues of Ah, Alh,.. * Amh, 
(repeated according to their multiplicities) converging to A. Let Fh(X) denote the 
eigenspace of Ah associated with them. Theorem 2.1 can be rewritten in this 
context: 

Theorem 3.4. There exist positive constants C and ho such that, for h < ho, 

6 (E(X), Fh(X)) < ChV, 

with -y .= minla, /} and oa and 3 as in Theorem 3.1. 

In order to analyze the convergence of the Aih's by means of Theorem 2.3, we need 
to bound the consistency terms. Notice that Mh and M*h also coincide because of 
the symmetry of a and b. 
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Lemma 3.1. There exist positive constants C and ho such that, for h < ho, 

Mh < Chl?+. 

Proof. In our case, 

Mh = sup sup [a(A(u, v), Hh( , )) -b((u, v), Hh(,4'))1 
(u, v) E E (X) (0,O) E E (X) 

11 (UV)11=1 11 (0,)11 =1 

with Hh being the projection onto Vh with respect to a. 
Let (u,v), (4,b) E E(X) and (Ohi'Ih) Hh((k,4')); proceeding as in the 

proof of Lemma 5.7 in [2], we obtain 

a(A(uv),Hh(q, 4h)) -b((u,v),Hh(4tb)) = ApFc2 divu (Oh u-'h 'V). 

rI 

For (Oh, 4'h) E Vh, we have kh'v = Ph(4'h"V), where Ph is the L2 (rF1) projection 
onto the piecewise constant functions on rI. Therefore, 

j div u (Oh V 'h * V) 

(3.1) = j [divu-Ph(divu)] [Ph(ibh V)-4'h V)J 

< jj div u - Ph(div u)11L2 (r)IIPhQ(/h . v) - .h VllL2(ri). 

Because of Theorem 3. 1, divu E Hl?&(Q,) for a > 1/2 and divu IH 1+ (Q) < 

ClI(u,v)fl; hence, 

(3.2) fldiv u- Ph(div u) 1IL2(rlp) < Chfl div uflH1(rl) < Chfl div U||H3/2 (QF) 

? Chj I(u, v) 11. 

On the other hand, 

(3-3) 
.ih - V- Ph(,'h * V)L2(p,) 

< I( - Ph)(1./ V)||L2(r) 

+ (- - Ph)(4'OV -Oh -)lL2(pi). 

Since (?,4') E E(X), by applying Theorem 3.1 once more, we have 4 E [H1'+"(Qs )]2 
with (0,1] and Hl/'H[H1+a(o )]2 < CHI(s,4')H. So, for r := min{1, 3 + 1/2}, we 
have for the first term on the right of (3.3) 

34(I - Ph)(4' V)flL2(rl) < ChTII4'II[Hl+?(Q )]2 

< Ch r 11 (,1 1) 11. 

For the second term we have 

|(I - Ph)(O' v-'Oh - 
V)||L2(r) 

(3.5) < 110'V -'v h V*lL2(r1) < CI) - hII[H (QS 
2 

< Ch-1 (?)ll 

in the last inequality we have used that l(f,4)- Hh((h , <))H ? CYhll(,4)ll = 

CV II (4, 4) II because of the particular form of property P2 valid for this problem. 
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Now, since y = min{c , ,} < r, we have that (3.3), (3.4) and (3.5) yield 

10~h * V - P Oh - V) ||L2(rI ) < Ch- ||1(0>,b)j||, 

which together with (3.1) and (3.2) shows that 

J divu(4h V - Ph iV) < Ch +711 (u,v) (q, b)1, 

proving the lemma. E 

Now, we conclude the main theorem of this section. 

Theorem 3.5. There exist positive constants C and ho such that, for h < ho, 

max tA-Aiht ?<Ch 2 
i=1,.., 

with ny min{a, 3} and a and 3 as in Theorem 3.1. 

Proof. This is a direct application of Theorem 2.3, Lemma 3.1 and the properties 
P1 and P2 valid for this problem. C1 

Theorem 3.5 shows that the order of convergence for the eigenvalues doubles 
that for the eigenfunctions. Numerical evidence of this improved order had been 
reported in [5]; however, to the authors' knowledge, it has not been proved be- 
fore. Furthermore, since ours is a nonconforming approximation of a noncompact 
operator, neither the theory in [10] nor that in [13] covers this case. 

4. THE INCOMPRESSIBLE CASE 

In [3], it has been proved that the method in [2] described in the previous section 
can be adapted to the case of an incompressible fluid. A problem with such a fluid 
can be thought of as a limit case of that with a compressible one as the acoustic 
speed c goes to 00. 

For a perfectly incompressible fluid, the divergence of its displacements vanishes 
and hence it is convenient to consider the pressure of the fluid as a new variable. 
In this way we obtain a variational problem for the vibration modes of an elastic 
vessel completely filled with the fluid (as in Figure 1): 

VP,: Find A E R and (u,v,p) E V x L2(QF), (u,v,p) 7& (0,0,0), such that 

a ((u, v), (Q.,'))-j pdivX = Ab ((u,v), (, sb)), V(q, b) EV, 
F 

j qdivu=O, VqEL2(QF), 
F 

with p being the pressure into the fluid and with the same notation as in ?3, except 
for the bilinear form a which, in this case, is defined by 

a ((UI v) , (0v+ : 0, v(v): 6 (+b)v v), ( I) V) I) E X. 
QS 

In [3], VP, is shown to be a well-posed mixed problem in the sense that the 
bilinear forms involved satisfy the standard Brezzi conditions (see, for instance, 
[7]). Proceeding as in [3], we can eliminate the pressure p in VP,, and the following 
equivalent eigenvalue problem is obtained: 
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IP: Find A E R and (u,v) E W, (u,v) $8 (0,0), such that 

a ((u, v), (4, 4')) = Ab ((u, v), (I, 4')), V(1, 4') W W, 

where W:= {(u,v) E V: divu= O in QF}. 
Let A: X - X be defined by A(u, v) E W and 

a (A(u, v), (4), 4')) = b ((u, v), (4, 4')), V(4, 4') C W. 

All the results of the previous section regarding the spectrum and eigenfunctions of 
A remain valid in this case, with V substituted by W and VP by IP. In particular, 
the analogue of Theorem 3.1 is the following (see [3]): 

Theorem 4.1. Let (u, v) be an eigenfunction of A with corresponding eigenvalue 
A E (0,1). Let p E L2(QF) be such that ( ,(u,v,p)) is a solution of VP,. Then 

u E [H'(QF)]2, V E [H1+/3(Qs)]2, p E H1'+a(QF) and 

1U11[Hr(QF)] + IVII[H1+3(Qs)]2 + (PHH1?(QF) C11(UV)1, 

with a E (1/2,1] and 03 E (0,1] and with C a positive constant. 

The finite element spaces introduced in ?3 are also useful in the incompressible 
case. Furthermore, let Wh := {(uV) E Vh: divu = 0 in QF}. Let Ah: X - X 
be defined by Ah(u,v) E Wh and 

a (Ah(u, v), (4), )) = b ((u, v), (4), )), V(4, 4) E Wh. 

In [3] it is shown that the spectrum and the eigenfunctions of Ah approximate 

those of A; implementation issues and numerical experiments are reported in [4]. 

Notice that, in particular, the restriction div u = 0 in the definition of Wh is easy 

to deal with, since Wh = {(curl~,v) E Vh: ( E Lh(QF)}. 

Properties P1 and P2 as in the previous section are shown to remain valid in the 

incompressible case in [3]; these properties are used therein to show the analogues 

of Theorem 3.2 (with K n Wh instead of K n Vh) and Theorem 3.3. 

Given A E (0,1), an eigenvalue of A of multiplicity m, for h small enough there 

exist m eigenvalues of Ah, Alh, . . . I Amh, (repeated according to their multiplicities) 

converging to A. Let E(X) and Fh(X) denote the respective eigenspaces. Theorem 

3.4 is also valid in the incompressible case (see [3]). 

As a consequence, P2 is also valid with Vh substituted by Wh. Property P1 is 

obviously valid for Wh C Vh. Lemma 3.1 is valid too in the incompressible case; 

in fact, its proof reduces to that of the compressible case by substituting div u by 

p and by using Theorem 4.1 to bound 11P11H3/2(Q )in the analogue of (3.2). 

Therefore, we may conclude, also in the incompressible case, that there is a 

double order of convergence for the eigenvalues: 

Theorem 4.2. There exist positive constants C and ho such that, for h < ho, 

max IS - Aih? < Ch27 

with ny min{ca, 3} and a and 3 as in Theorem 4.1. 
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